Modeling Reaching Impairment After Stroke Using a Population Vector Model of Movement Control That Incorporates Neural Firing-Rate Variability
نویسندگان
چکیده
The directional control of reaching after stroke was simulated by including cell death and firing-rate noise in a population vector model of movement control. In this model, cortical activity was assumed to cause the hand to move in the direction of a population vector, defined by a summation of responses from neurons with cosine directional tuning. Two types of directional error were analyzed: the between-target variability, defined as the standard deviation of the directional error across a wide range of target directions, and the within-target variability, defined as the standard deviation of the directional error for many reaches to a single target. Both between- and within-target variability increased with increasing cell death. The increase in between-target variability arose because cell death caused a nonuniform distribution of preferred directions. The increase in within-target variability arose because the magnitude of the population vector decreased more quickly than its standard deviation for increasing cell death, provided appropriate levels of firing-rate noise were present. Comparisons to reaching data from 29 stroke subjects revealed similar increases in between- and within-target variability as clinical impairment severity increased. Relationships between simulated cell death and impairment severity were derived using the between- and within-target variability results. For both relationships, impairment severity increased similarly with decreasing percentage of surviving cells, consistent with results from previous imaging studies. These results demonstrate that a population vector model of movement control that incorporates cosine tuning, linear summation of unitary responses, firing-rate noise, and random cell death can account for some features of impaired arm movement after stroke.
منابع مشابه
Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملModeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)
Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...
متن کاملEffect of practice variability on anticipatory postural control during reaching task
Introduction and purpose: Reaching movement is one of the common task for assessing learning mechanism and is daily task in human life, improvement in postural stability can influence the function of this task. In this term, the aim of current study was to compare constant (simple reaction time) and variable random practice (choice reaction time) on the improvement of anticipatory postural adju...
متن کاملApplication of multilayer perceptron neural network and support vector machine for modeling the hydrodynamic behavior of permeable breakwaters with porous core
In this research, the application of multilayer perceptron (MLP) neural networks and support vector machine (SVM) for modeling the hydrodynamic behavior of Permeable Breakwaters with Porous Core has been investigated. For this purpose, experimental data have been used on the physical model to relate the reflection and transition coefficients of incident waves as the output parameters to the wid...
متن کاملThe firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat
Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal horn is well described, the midbrain neural basis underlying each phase of behavior in formalin test has not been clarified. The present study was designed to investigate the nucleus cuneiformis (CnF) neuronal responses during two phases after subcutaneous injection of formalin into the hind paw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 15 11 شماره
صفحات -
تاریخ انتشار 2003